
prometeo Documentation
Release 0.0.5

Andrea Zanelli

Aug 20, 2020

Contents:

1 features 3
1.1 Installation . 3
1.2 Python syntax . 4
1.3 BLAS/LAPACK API . 6
1.4 Performance . 8

i

ii

prometeo Documentation, Release 0.0.5

This is prometeo, an experimental modeling tool for embedded high-performance computing. prometeo provides
a domain specific language (DSL) based on a subset of the Python language that allows one to conveniently write
scientific computing programs in a high-level language (Python itself) that can be transpiled to high-performance
self-contained C code easily deployable on embedded devices.

Contents: 1

prometeo Documentation, Release 0.0.5

2 Contents:

CHAPTER 1

features

1. Python compatible syntax : prometeo is a DSL embedded into the Python language. prometeo programs can
be executed from the Python interpreter.

2. efficient : prometeo programs transpile to high-performance C code.

3. statically typed : prometeo uses Python’s native type hints to strictly enforce static typing.

4. deterministic memory usage : a specific program structure is required and enforced through static analysis. In
this way prometeo transpiled programs have a guaranteed maximum heap usage.

5. fast memory menagement : thanks to its static analysis, prometeo can avoid allocating and garbage-collecting
memory, resulting in faster and safer execution.

6. self-contained and embeddable : unlike other similar tools and languages, prometeo targets specifically em-
bedded applications and programs written in prometeo transpile to self-contained C code that does not require
linking against the Python run-time library.

1.1 Installation

1.1.1 PyPI installation

prometeo can be installed through PyPI with pip install prometeo-dsl. Notice that, since prometeo makes extensive
use of type hints to equip Python code with static typing information, the minimum Python version required is 3.6.

1.1.2 manual installation

If you want to install prometeo building the sources on your local machine you can proceed as follows:

• Run git submodule update –init to clone the submodules.

• Run make install_shared from <prometeo_root>/prometeo/cpmt to compile and install the shared library asso-
ciated with the C backend. Notice that the default installation path is <prometeo_root>/prometeo/cpmt/install.

3

https://docs.python.org/3.6/library/typing.html

prometeo Documentation, Release 0.0.5

• You need Python 3.6. or later.

• Optional: to keep things clean you can setup a virtual environment with virtualenv
–python=<path_to_python3.6> <path_to_new_virtualenv>.

• Run pip install -e . from <prometeo_root> to install the Python package.

Finally, you can run the examples in <root>/examples with pmt <example_name>.py –cgen=<True/False>, where
the –cgen flag determines whether the code is executed by the Python interpreter or C code is generated compiled and
run.

1.2 Python syntax

prometeo is an embedded domain specific language based on Python. Hence, its syntax is based on Python. Below
you find details regarding the most common supported Python constructs that prometeo is able to transpile to C.

1.2.1 variable declaration

A variable can be declared as follows

<var_name> : <type> = <value>

where <var_name> must be a valid identifier <type> must be a valid prometeo built-in type or a user-defined type
and <value> must be an valid expression of type <type>.

Example:

a : int = 1

1.2.2 list declaration

A list can be declared using the plist constructor as follows

<list_name> : List = plist(<type>, <dim>)

Examples:

v : List = plist(int, n)

and

sizes : dimv = [[2,2], [2,2], [2,2], [2,2], [2,2]]
A : List = plist(pmat, sizes)

1.2.3 if statement

An if statement takes the form

if <cond>:
...

4 Chapter 1. features

prometeo Documentation, Release 0.0.5

1.2.4 for loop

A for loop takes the form

for i in range([<start>], <end>)
...

where the optional parameter <start> must be an expression of type int (default value 0) and defines the starting value
of the loop’s index and <end> must be an expression of type <int> which defines its final value.

1.2.5 function definition

Functions can be defined as follows

def <function_name> (<arg1> : <arg_1_type>, ...) -> <ret_type> :

...

return <ret_value>

1.2.6 class definition

prometeo supports basic classes of the following form

class <name>:
def __init__(self, <arg1> : <arg_1_type>, ...) -> None:

self.<attribute> : <type> = <value>
...

def <method_name> (self, <arg1> : <arg_1_type>, ...) -> <ret_type>:
...

return <ret_value>

1.2.7 main function

For consistency all main functions need to be defined as follows

def main() -> int:

...

return 0

1.2.8 pure Python blocks

In order to be able to use the full potential of the Python language and its vast pool of libraries, it is possible to write
pure Python blocks that are run only when prometeo code is executed directly from the Python intepreter (when –cgen
is set to false). In particular, any line that is enclosed within # pure > and # pure < will be run only by the Python
interpreter, but completely discarded by prometeo’s parser.

1.2. Python syntax 5

prometeo Documentation, Release 0.0.5

some prometeo code
A : pmat = pmat(n,n)
...

pure >

this is only run by the Python interpreter (--cgen=False)
and will not be transpiled)

some Python code

import numpy as np

M = np.array([[1.0, 2.0],[0.0, 0.5]])
print(np.linalg.eigvals(M))
...

pure <

some more prometeo code
for i in range(n):

for j in range(n):
A[i, j] = 1.0

...

1.3 BLAS/LAPACK API

Below a description of prometeo’s BLAS/LAPACK API can be found:

1.3.1 LEVEL 1 BLAS

1.3.2 LEVEL 2 BLAS

• General matrix-vector multiplication (GEMV)

𝑧 ← 𝛽 · 𝑦 + 𝛼 · op(𝐴)𝑥

pmt_gemv(A[.T], x, [y], z, [alpha=1.0], [beta=0.0])

• Solve linear system with (lower or upper) triangular matrix coefficient (TRSV)

op(𝐴)𝑥 = 𝑏

pmt_trsv(A[.T], b, [lower=True])

• Matrix-vector multiplication with (lower or upper) triangular matrix coefficient (TRMV)

𝑧 ← op(𝐴)𝑥

pmt_trmv(A[.T], x, z, [lower=True])

6 Chapter 1. features

prometeo Documentation, Release 0.0.5

1.3.3 LEVEL 3 BLAS

• General matrix-matrix multiplication (GEMM)

𝐷 ← 𝛽 · 𝐶 + 𝛼 · op(𝐴) op(𝐵)

pmt_gemm(A[.T], B[.T], [C], D, [alpha=1.0], [beta=0.0])

• Symmetric rank 𝑘 update (SYRK)

𝐷 ← 𝛽 · 𝐶 + 𝛼 · op(𝐴) op(𝐵)

with 𝐶 and 𝐷 lower triangular.

pmt_syrk(A[.T], B[.T], [C], D, [alpha=1.0], [beta=0.0])

• Triangular matrix-matrix multiplication (TRMM)

𝐷 ← 𝛼 ·𝐵𝐴⊤

with 𝐵 upper triangular or

𝐷 ← 𝛼 ·𝐴𝐵

with 𝐴 lower triangular.

pmt_trmm(A[.T], B, D, [alpha=1.0], [beta=0.0])

1.3.4 LAPACK

• Cholesky factorization (POTRF)

𝐶 = 𝐷𝐷⊤

with 𝐷 lower triangular and 𝐶 symmetric and positive definite

pmt_potrf(C, D)

• LU factorization (GETRF)

𝐶 = 𝐿𝑃 𝑈

pmt_getrf(C, D, ipiv)

• QR factorization (GEQRF)

𝐶 = 𝑄𝑅

pmt_geqrf(C, D)

1.3. BLAS/LAPACK API 7

prometeo Documentation, Release 0.0.5

1.4 Performance

Since prometeo programs transpile to pure C code that calls the high performance linear algebra library BLASFEO
(publication, code), execution time can be comparable to hand-written high-performance code. The figure below
shows a comparison of the CPU time necessary to carry out a Riccati factorization using highly optimized hand-
written C code with calls to BLASFEO and the ones obtained with prometeo transpiled code from this example). The
computation times obtained with NumPy and Julia are added too for comparison - notice however that these last two
implementations of the Riccati factorization are not as easily embeddable as the C code generated by prometeo and
the hand-coded C implementation. All the benchmarks have been run on a Dell XPS-9360 equipped with an i7-7560U
CPU running at 2.30 GHz (to avoid frequency fluctuations due to thermal throttling).

8 Chapter 1. features

https://arxiv.org/abs/1704.02457
https://github.com/giaf/blasfeo
https://github.com/zanellia/prometeo/blob/master/examples/riccati_example/riccati_mass_spring.py

	features
	Installation
	Python syntax
	BLAS/LAPACK API
	Performance

